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An analytical procedure for the evaluation of two-center integrals in x-ray scattering 
calculations has been developed. The scattering potential is represented in prolate 
spheroidal coordinates. The plane wave operator is expanded in spheroidal wave- 
functions. All integrals are evaluated analytically with the aid of stable recursion rela- 
tions. It is found that the several infinite sums involved are rapidly convergent, so that 
a practical computational method is at hand. The method is illustrated with a calculation 
of the molecular scattering factor for C-H from a near Hartree-Fock wavefunction 
comprised of an extended basis set of Slater-type orbitals. The coherent x-ray scattering 
intensity of H, has been computed from a natural spin orbital expansion of the exact 
electronic wavefunction for the I&+ state of H, . 

INTRODUCTION 

The interpretation of x-ray scattering experiments in terms of N-electron 
wavefunctions requires an evaluation of Fourier transforms. For example, the 
coherent x-ray scattering intensity is given by 

I, = f *c3fw 

in whichf(S) = J-p(r) exp(iS a r) dr. 
The one-electron density function is 

(1) 

in which ri is a vector of the space and spin coordinates of electron i, and da, 
represents integration over the spin coordinate of electron 1. # in (2) is the 
N-electron wavefunction for the molecule or atom in the ground state. The 
variable S, the scattering vector, is the difference between the incident and scattered 
momenta of the x-rays. Expressions similar to (1) are found for incoherent and 
total x-ray scattering [e.g., l-21. 
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If the wavefunction can be expanded in single-particle basis functions, then all 
such scattered x-ray intensities can be evaluated from the Fourier transforms of 
products of the several basis functions. (The scattering in this case is within the 
first Born approximation.) Basis functions are often centered on the several 
nuclei of the molecule, so that the calculations of the integrals 

4 = i q%d WiS . r) f#db) dr (3) 

are required. The vectors ra and rb in (3) have origins at centers a and b, respec- 
tively; the origin of r is a matter of convenience. Analytical expressions for these 
integrals depend explicitly on the form of the basis functions C& ; several expres- 
sions (e.g., Refs. [3-61) have been given for Z, and I, in the most common bases, 
exponential (usually Slater) orbitals and Gaussian orbitals. We wish to present 
an analytical scheme for evaluation of I, which is general for exponential basis 
functions and capable of arbitrary accuracy. 

MATHEMATICAL FORMALISM 

The coordinate system to be employed is the prolate spheroidal system, defined 
in terms of centers a and b separated by a distance R by 5 = (r, + rb)/R, 
7 = (r, - rb)/R, and 4, the coordinate of rotation about the u-b axis. In this 
system [7], 

ra = (4 i- 7) R/2, 

rh = (f - 7) R/2, 

(4) 

z = &R/2. 

In these coordinates, the plane wave may be expanded in spheroidal wavefunctions 
[91 

x cos rn(b - do). (5) 
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The components of S are S, 7’ (= cos 0,), and c#+, (spherical polar coordinates); 
c = SR/2 and / S / = 47r sin 0/h, where 20 is the scattering angle. The spheroidal 
wavefunctions are defined by [8] 

(6) 

and 

Primed summations indicate that the summation index Y only takes values of the 
same parity as n - m. P,m(v) and j,(cE) denote the Ith-order associated Legendre 
and spherical Bessel functions, respectively. The expansion coefficients d:*“(c) 
are determined by the scalar Helmholtz differential equation and the Legendre 
recursion relations [IO]. The coefficients a:*” (c) are simply related to the d’s by 

4 m*n = (-l)(n-nl-r)/2 (r + 2m)!/r! x (n - WI)!/@ + m)! d:“*“. 
In the prolate spheroidal representation, a normalized Slater-type atomic 

orbital (STO) may be expressed as follows: 

This transformation follows from Eqs. (4) and closely follows the presentation 
of Ruedenberg [I I]. Application of Eqs. (5) and (9) puts I, into the form 
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The factor (p - 7”) due to the volume of integration has been collected into 
polynomials in 5 and 7 which are incorporated into the a$, and Y$!% functions. 
wi is the appropriate coefficient for each term in the polynomial. The functions 
in (11) and (12) are the integrals 

I;&, 4 = j= P-YE2 - 1p jr,&0 e-“’ df (13) 
and 

1 

B:,(P) = J’, $(I - r12)“i2P:+m(rl) eon dq. (14) 

Thus, (IO) is the formal solution to the problem. One needs to evaluate (13) 
and (14) and also the expansion coefficients a:+“(c) and dr*“(c). The convergence 
properties of g:!,(c) and Y$,(c), defined in (11) and (12), need to be studied. 
Finally, the sum over ,j and rate of convergence for the sum over II in (10) must be 
determined in order to appraise the computational utility of (10). 

COMPUTATIONAL PROCEDURES 

The integral (13) has, in previous studies (e.g., [12, 13]), been evaluated 
numerically. In the present work, we employ a generalized version of an analytical 
procedure given by Stewart, Davidson, and Simpson [4]. Details are given in 
Appendix I. 

Treatments of the integral (14) have been published previously. The tables 
given by Kotani, Amemiya, Ishiguro and Kimura [14], for example, were prepared 
by constructing tables of B&(/3) by means of a recursion resulting from integration 
by parts, then extending to general r and M by means of recursions derived from 
the properties of associated Legendre functions. Harris [15] has presented a 
procedure wherein recursion is performed on the ratios x, = B,+,/B, in order to 
obtain the B,O,,'s which are then generalized as above. In practice, we used a 
routine written by Stephen Rothenberg [16] which is similar to the procedure of 
Harris. Calculated integrals were compared to those of Kotani et al., and agreement 
was reached to the limit of the machine word. 

Associated Legendre functions, used in the evaluation of Sm,n(~, q’) in (lo), 
were calculated by the procedure of Belousov [17]. 

The expansion coefficients of (6) and (7) are discussed at length in texts on 
spheroidal wavefunctions [8, 181. Our computational procedure follows that of 
Little and Corbat6 [19]. In brief, application of the Helmholtz equation and a 
recursion expression for associated Legendre functions leads to a recursion 
expression for the dFn’s (or the u~~‘s) of the form 

-44+2 + B(t) 4 + Cd,-, = 0, (15) 
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in which I is a separation constant from the Helmholtz equation and is usually 
unknown. In practice, (15) is recast as a continued fraction of the ratios dTlz/d, 
or d,-,/d, , an initial estimate of t is made and then refined by an iterative proce- 
dure. When I has converged and accurate values of the ratios are on hand, the 
expansion coefficients are determined by the normalization condition of Stratton, 
Morse, Chu, Little and Corbato [18]. 

Given the procedure outlined above (and described in detail by Little and 
Corbat6 [19]), the problem is to insure that reasonable estimates of the separation 
constant 1’ are input. This saves computational labor and insures that the iteration 
for f will converge. For parameters in the ranges 0 < M < 8, M < n < 8, and 
0 < c < 8.0, values for tM,J c can be taken (or interpolated) from the tables of ) 
Little and Corbat6 [19]. Tables of r,,,(c) can then be extended by means of qua- 
dratic extrapolation. We have found this procedure satisfactory for c < 25.0 
and n < 50. 

CONVERGENCE PROPERTIES 

In order to assess the utility and limitations of the method, we must examine 
the convergence behavior of g$!n. and .Y$!., , and the summation over n. In all 
cases in which extent of convergence must be assessed, our procedure is as follows: 
The most recent increment to a particular sum is compared to the value of that 
sum. If their ratio is smaller than a specified convergence criterion, the summation 
is terminated. 

The behavior of g& and Yj,!& is governed to a large extent by that of the 
a?” and dy”, respectively, since the functions Zck and Bcl generally vary more 
slowly with r than their coefficients. As functions of r, these spheroidal expansion 
coefficients attain maximum values at or near Y = n - M and decline smoothly 
in absolute value thereafter. We do not consider it worthwhile to check for con- 
vergence of 2 or Y until the summation has extended beyond r = n - M. 
Thereafter, one may derive from the asymptotic behavior of ar*“(c) as a function 
of r an approximate expression for the depth to which r should be taken to achieve 
arbitrary convergence of zi& ar”(c). Let rt be the value of r for which Ci a?%(c) 
has converged to one part in lo*; then rt = n - A4 + p, and p is given by 

p = -q In lO/ln{c/(2n - 2M + p)}. (16) 

A derivation is presented in Appendix II. For example, with q = 10, c = 25, 
n = 8, and M = 8, (16) yields p = 43 which predicts that 22 terms beyond 
r = y1 - M = 0 are needed for convergence to lo-lo. A comparable expression 
may be obtained for the dpn’ s. The only circumstance which should cause 9 
or P’ to require more than rt terms is monotonic increase of the functions Zryk or 
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B$ in the region r = n - M. The lEk(c, a) integrals exhibit this behavior to an 
increasing extent with increasing c. The worst case studied was c = 25.0, at which 
value the ayn’s decrease most slowly and the IFk’s increase most rapidly. In the 
case of the parameters given above, 13 terms beyond rt were required for conver- 
gence to one part in 10 lo When c = 25, M = 0 and II = 10 or higher, the satis- . 
factory calculation of S?(j) ( M,n c, 01 re ) q uired 6 or fewer terms beyond rt . For large r, 
the function Izk has the asymptotic expansion 

Irk N (z/a p’+M/(a + y)r+M+lP yk-M+lP) yk+M--112, (17) 

where y, a function of Q and c, is defined by (A13) of Appendix I. The relation (17) 
follows from (A13) and (A14) when r is allowed to increase without bound. 
At large r [20], 

a,M;;lay,n - (c/2r)2. (18) 

Thus convergence of L%?J&( ) ’ g c 1s uaranteed since, in the limit of large r, 

(a :“;;q$,,>m,“qJ + c4/(4(~ + y)2 r2). (19) 

For c bounded, (19) becomes less than one at sufficiently large r. The rapid fall-off 
of the en(c) with increasing r makes S$!,z a computationally useful function. 

An additional problem is created by the Ick’s due to their oscillatory behavior 
at small r: if a particular value of IrSk M lies near a node, it could result in premature 
truncation of the summation. The oscillations do not extend beyond r N c, 
however, so this difficulty can be avoided by deferring the convergence test until r 
is greater than c or 12 - M, whichever is larger. BEz(/3) is free of the difficulties 
associated with Iyj(c, ol), so that the convergence for Y$!Q is easily achieved. 
For example, Eq. (16) suggests that it would require 24 terms to calculate $,I; 
(c = 25, p = 15) t o an accuracy of one part in lOlo. Actually, only 16 terms are 
necessary. 

The behavior of the summation over n in (10) is more difficult to analyze, since 
it depends, in principle, upon the exponential parameters 01 and p, the powers of 
5 and r) (denoted by k and I, respectively), and the values of c and M. A test 
function 

(20) 

was evaluated atrepresentative values of its arguments, and the truncation value 
nmax was related to those arguments. In all cases convergence to one part in lOlo 
was observed; a reasonable upper limit for the necessary number of terms in the 
summation is given by lZm%x = 16 + 1.2~ + M/2. Convergence length was prac- 
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tically independent of k and decreased (erratically) with increasing 1, namely, 
dnm,,/dI varied from --.4 to 0. Variation of 01 and p yielded only one significant 
trend: combinations of large o( and small /3 (e.g., 01 = 20, ,L3 < 5) converged in 
two or three fewer terms than most other combinations. The parameters were 
varied over the ranges 0 < k or I < 12, 0 < A4 < 10, 2 < 01 ,( 20, 0 < p < 20 
and 0 < c < 25. The ranges of k, I, M, N and /3 correspond to the ranges of values 
that are encountered in wavefunctions of diatomic molecules with Z, , Z, < 10 
(e.g., the diatomic hydrides of Cade and Huo [21]). The maximum value of c 
corresponds to sin B/h slightly greater than 2 A-l for the case of R = 2 A; thus 
it extends far enough to include the range of x-ray scattering by silver KG radiation. 

ACCURACY: ONE-CENTER TESTS 

The assembled program was checked by using it to calculate scattering factors 
for one-center orbital products, which can be readily evaluated by independent 
methods [6]. If the orbital product is displaced from the origin by a distance R/2 
and its scattering factor, fi(S), is calculated in the two-center frame with a unit 
function on center b it will be related to the scattering factorfi(S) calculated in 
the one-center frame by 

f,(S) = exp(iS . R/2)f,(S). (21) 

The scattering factor of an orbital product will be real or imaginary if the total 
orbital angular momentum is even or odd, respectively [6]. If we calculate the 
terms of Eq. (21) with a specified convergence criterion of lo-“, the ideal outcome 
would be as follows: the nonvanishing component on the right-hand side of 
Eq. (21) should agree with the corresponding component on the left-hand side 
through the first iz digits. The other component, which is formally zero, should 
be at least n orders of magnitude smaller than the nonzero component. When 
these conditions are not fulfilled, a loss of accuracy has occurred. 

In Tables I-III we,present typical calculations of the scattering factors of one- 
center orbital productsf,(S), calculated (i) by the one-center method of Stewart [6], 
and (ii) by the present two-center method. The orbital products (l~)~, ls4f , and 
(4f,)2 are, respectively, 2-, 12-, and 30-term polynomials in f and 7. In each case 
the displacement / R/2 / = 1 atomic unit (0.529167 A), the orbital exponents 
5 = 1.0, the convergence criterion was one part in lOlo, and the Bragg vector S 
was fixed in the direction 7’ = 1 (i.e., parallel to R). These calculations were done 
in double precision (72 bits) on a UNIVAC 1108. Two trends are evident in 
Tables I-III. The agreement betweenf,(S) and exp(iS . R/2)f2(S) becomes worse 
with increasing S. In addition, it becomes worse with increasing polynomial 
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TABLE I 
One-Center Orbital Product Test”: (Is)* 

C sin B/X, A-’ 

Procedure (i)” 

RefXW 

0 0 o.looooooooo(+l) 
0.5 0.075 0.8858131488(+0) 
1.0 0.150 0.6400000000(+0) 
2.0 0.301 0.2500000000(+0) 
3.0 0.451 0.9467455621(- 1) 
4.0 0.602 0.4000000000(- I) 
5.0 0.752 0.1902497027( - 1) 
7.0 1.053 0.5695977216(-2) 

10.0 1.504 0.1476289941(-2) 
15.0 2.256 0.3051047844(-3) 
20.0 3.008 0.9802960494(-4) 
25.0 3.760 0.4044070256(-4) 

Procedure (ii) 

ReJXS) Imf;(W 

o.lOOOoOOOOo(+l) 
0.8858131488(+0) 
o.64oooooooo(+o) 
O.25OOOOOOOO(+O) 
0.9467455621( ~ 1) 
0.400OOOOOO0( - 1) 
0.1902497027( - 1) 
0.5695977216(-2) 
0.1476289941(-2) 
0.3051047844(-3) 
0.9802960496( -4) 
0.4044070252(-4) 

0 

0.54(-14) 
-0.75( - 14) 

0.7.5-13) 
0.59(-12) 

-0.69(- 13) 
0.20(-13) 

-0.12(--12) 
O.ll(-12) 
0.36(- 13) 

-0.46(- 14) 
0.23( - I 3) 

a The vector S is taken parallel to R, that is, 7’ = 1. The orbital exponent 4 = 1, and R = 
2 bohrs. 

* Procedures (i) and (ii) are described in the text in connection with Eq. (21). 
r The notation O.lO(+l) indicates 0.10 x lO+l. 

TABLE II 
One-Center Orbital Product Test”: (1s 4f0) 

c sin eix, A-l 

Procedure (i) Procedure (ii) 

lmfi@) 

0 0 0 

0.5 0.075 -0.8256772392( ~ 1) 
1.0 0.150 -0.2930859019(+0) 
2.0 0.301 -0.2236067978(+0) 
3.0 0.451 -0.6660271801(-I) 
4.0 0.602 -0.1831786887(-l) 
5.0 0.752 -0.5581680502(-2) 
7.0 1.053 -0.7512071661(-3) 

10.0 1.504 -0.7527976482(-4) 
15.0 2.256 -0.4908415463(-5) 
20.0 3.008 -0.6808134259(-6) 
25.0 3.760 -0.1453488999(-6) 

~m.fiC% 

0 

-0.8256772392(- 1) 
-0.2930859019(+0) 
-0,2236067978($-O) 
-0.6660271801(-1) 
-0.1831786887(-l) 
-0.5581680502(-2) 
-0.7512071660(-3) 
-0.7527976489(-4) 
-0.4908415401(-5) 
-0.6808134022(-6) 
-0.1453489112(-6) 

Refix% 

-0.34(-17) 
-0.1 l(-14) 

0.37(-14) 
-0.49(-13) 

0.91(-13) 
-0.88(--13) 
-0.74(-13) 
-0.46(-13) 
-0.15(-13) 
-0.45(-13) 
-0.47(-13) 
-0.95(-14) 

a See Table I for details. 
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TABLE III 

One-Center Orbital Product Test? (4jJ2 

Procedure (i) Procedure (ii) 

c 

0 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
7.0 

10.0 
15.0 
20.0 
25.0 

sin e/h, -4-l Re.A(S) 

0 o.rOOOOOOOoo(+l) 
0.075 0.1237110171(+0) 
0.150 -0.2018508800( +O) 
0.301 -0.1250000000(+0) 
0.451 -0.3893112173(--1) 
0.602 -0.7892480000-2) 
0.752 -0.1635670827(-2) 
I .053 -0.1043270236(-3) 
1.504 -0.4149960168(-5) 
2.256 -0.8684803383(-7) 
3.008 -0.5227976953( - 8) 
3.760 -0.5790398748(-9) 

Refi(S) JmfZ3 

o.lOOoOOOooo(+l) 0 
0.1237110171(+0) -0.82(- 14) 

-0.2018508800(+0) 0.29(-13) 
-0.1250000000(+0) 0.84(-13) 
-0.3893112173(-l) 0.13(-12) 
-0.7892480000-2) -0.26(-13) 
-0.1635670827(-2) -0.44(-13) 
-0.1043270236(-3) -0.13(-13) 
-0.4149960161(-5) -0.27(-13) 
-0.8684804299(-7) -0.70(- 14) 
-0.5227958253(-S) -0.32(-13) 
-0.5790333719(-9) 0.93(--14) 

“See Table I for details. 

length of the function being transformed. Polynomial length, in turn, increases 
with increasing orbital quantum numbers n and 1. 

The loss of accuracy observed in Tables I-III is a result of the oscillatory nature 
of the functions involved in the various summations. At small S (corresponding 
to c < 7) the summations over n and r in Eqs. (lo)-(12) are usually dominated 
by one term. As S increases, this peaking character is lost, especially for the 
function %?grn , and one must sum over terms of comparable magnitude but 
varying sign. When the final magnitude of such a summation is less than that of 
its largest term, the difference in magnitude corresponds to the number of digits 
of accuracy lost through numerical differencing. The manner in which this situation 
comes about is best illustrated by considering specific examples. 

At c = 1, for instance, the spheroidal expansion coefficients ay”(c) attain 
their maximum value for a given n, M at r mLX = n - M, for which a$?& ‘v 1. 
For all other Y, 1 ayn 1 is less than 1, usually more than an order of magnitude 
smaller. Likewise, the functions lFk(c = 1, a) attain their maximum value for 
a given M, k at r -k/2, although they do not peak as sharply as the ayn’s. 
Thus ~~~,(c = I, a) IS usually dominated by the term containing the largest 
coefficient a:$, and loss of accuracy seldom occurs, although both I$ and a:.71 
oscillate before reaching their respective maxima. 

At c = 25, the coefficients still peak at rmax -n - M; however, the maximum 
is now on the order of 10’” for n = 0, falling to 1 ay;zx / - I by n - 1.5. They 
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decline rapidly after r > rmax , but are not particularly small in the oscillatory 
region r < rmax . Meanwhile, the corresponding functions ZEk(c = 25, CL) oscillate 
in the region r 2 c, above which they increase to a maximum whose position 
depends on k and 0~. The IFk increase so gradually that 9?$!n may have 
converged to the required accuracy before this maximum is reached. In this case, 
the sum 9?$!+Jc = 25, ) a: contains a rather large number of terms which are of 
comparable magnitude but varying sign; thus, the opportunities for differencing 
are abundant. Detailed numerical studies indicate that this is precisely what 
happens. @b(c = 25, CY) is about 14 orders of magnitude smaller than its largest 
term, 92: is about 7 orders smaller and 9?$& is of the same order of magnitude 
as its largest term. Thus, if the a:*“(~ = 25) are computed subject to a convergence 
criterion of lo-lo, BY?bj,‘lz(c = 25, a) with low II ( 5 5) are completely untrustworthy. 
When n 2 14,99bj.)n is given to the ten significant figures specified by the convergence 
criterion. (Evidently one can attempt to suppress this problem by computing 
a?“(c) and Z$(c, CX) to a greater accuracy than the rest of the calculation, but 
this merely postpones the inevitable and is already impractical at c = 25.) At 
c = 25, the terms near n = 0 are usually not the dominant ones in the summation 
(IO), although they may be large enough to deprive the scattering factor of most 
of its significant figures. Obviously, if the present method is to be at all useful 
at c = 25, the totally inaccurate 9?bj,)n’ s must be discounted or weighted lightly. 
The functions P’l.j,L(c, /3), &(c, 7’) and N;‘,(c), which multiply .!%$k, will, under 
certain circumstances, provide relatively small weights for the 9?t,ln with small n. 
In general, .Y’&(c = 25, /3) and S,,,(c = 25, v’) are of the same order of magnitude 
as the largest aFn for that value of n, and N,,,(c) is of the same order as the square 
of the largest Q’*~(c). Thus the B?(j) T O,?l ‘s are given comparable weights and the 
resulting scattering factor is quite inaccurate. However, when 77’ = 1, then 
P,(q’) = 1, and ?&(c, 7’) = Ci do,*“(c) L 1, which is the normalization condition 
for the &“. In this case, the relative weights given to the .LJ?bj,)n are proportional to 
the inverse of the largest ~7:~ for each n. Since [a~,“(~ = 25)ImaX - lOlo and 
[u;*~‘(c = 25)]max - 1, the function &Jc, 7’ = 1) will minimize the contributions 
of the most inaccurate @k’s This is illustrated byf& at c = 25. From Table I, 
the accurate one-center calculation yields f = 0.4044070256 x 10P4, while the 
two-center expansion, evaluated at 7’ = 1, yields a real component of 
0.4044070252 x 1O-4, in excellent agreement. However, when fisls is evaluated 
with the two-center expansion and q’ = 0, the result is 0.4041615822 x 1O-4, 
a considerable loss of accuracy which is completely due to the effect of SO,n(~, 3’). 

Another case in which it is possible to maintain substantial accuracy at c = 25 
is the calculation of scattered intensities. In this case one performs an integration 
of the sort 

I(S) = J f *@I f(s) d% (22) 
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in which ds represents integration over the angular coordinates of S. The inte- 
gration over +,, is trivial; the integration over 7’ is performed using Eq. (8) the 
orthogonality condition for S b,,n(~, 7’). The resulting equation is 

which gives a weight to (.%$:J2 proportional to the inverse square of the largest 
a?” for that M and n. 

We note in passing that the functions -Yj,!&(c, fi) present none of the difficulties 
of the %?$!!.n, chiefly because the functions B,T(/3) decline monotonically as a func- 
tion of r over most of the range of r. A further simplification occurs when p = 0: 
the infinite series (12) becomes a finite series of length l/2 + 1, in which I is the 
power of 7. 

The remaining important cause of loss of accuracy is the summation over the 
density function polynomial 

in which the terms often have comparable magnitudes but varying signs. This 
effect appears in Tables T-111 as a loss of four significant figures off4f,4f,(c = 25, 
7’ = 1) relative tofisls(c = 25, 71’ = 1). 

The tests and examples discussed here enable us to estimate accuracy require- 
ments for the present method. In the range 0 < c < 10, a convergence criterion 
of IO-% will usually provide an accuracy of n digits. In the range 10 < c -< 20, 
a convergence criterion of IO-n-4 will usually provide an accuracy of n digits. 
At c = 25, the present method is inapplicable, except in the particular instances 
noted above, namely, the calculation of intensities, for which the integration over 
orientation of S is performed, and the case A4 = 0, 7’ = 1. In addition, it appears 
that single-precision calculations will suffice when c < 10 (as long as n < 8), but 
double precision is required when c > 10. 

FURTHER RESULTS AND CONCLUSIONS 

In Table IV we present the molecular scattering factor for the CH radical. 
The density function p(r) was obtained from the near-Hartree-Fock wavefunction 
of Cade and Huo [21]. The Bragg vector is fixed at 7’ = 1, which corresponds to 
setting S parallel to R, the internuclear vector. The convergence criterion is IO-$ 
no more accuracy is needed in the range of c employed since the wavefunction 
is only specified to five digits. The wavefunction places 12 sigma and 6 pi atomic 
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TABLE IV 

Molecular Scattering Factors for CH Radical” 

Procedure (i)” Procedure (ii) 

c sin 0/x, A-l Re Component Im Component Re Component Im Component 

0 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
7.5 

10.0 

0 0.69999597( + 1)” 0 0.69999591(+1) 0 
0.071 0.55434074( + 1) -0.24026690( + I) 0.55434057( + 1) - 0.24026689( + 1) 
0.142 0.25745624(+ 1) -0.31770937(+1) 0.25745620( + 1) -0.31770938(+1) 
0.283 -0.12094642(+ I) -0.16455484( + 1) -0.12094637(+1) -0.16455482(+1) 
0.425 -0.17823923(-t 1) 0.88346996(-2) -0.17823921(+1) 0.88348681(-2) 
0.566 -0.96852174(+0) 0.11390798(+1) -0.96852162(+0) 0.11390788(+1) 
0.708 0.40099820( SO) 0.12690749( + I ) 0.40099795(+0) 0.12690753(+ 1) 
1.062 0.37002344(+0) -0.96005455(+0) 0.37002354(+0) -0.96005520(+0) 
1.416 -0.60657926($-O) 0.38290796(+0) -0.60657886(+0) 0.33290774(+0) 

(L The Bragg vector S is parallel to the molecular axis. The convergence criterion is lO-6. 
b Procedures (i) and (ii) are described in the text. 
c The notation follows Table I. Normalization of the scattering factors is such that f(0) = N, 

the number of electrons in the system. The difference between f(0) and its formal value of 7.0 
is due to the fact that the molecular wavefunction is only specified to 5 digits. 

orbitals (including 3d and 4f orbitals) on the carbon atom, and 4 sigma and 2 pi 
atomic orbitals (including 2p and 3d orbitals) on the hydrogen atom. f(S) was 
calculated in two ways: (i) all two-center orbital products were done by the present 
method, but all one-center products were done by Stewart’s method [6], and 
(ii) both one- and two-center orbital products were done by the present method. 
Since the greater part of the molecular electron density is on the carbon atom, 
the largest contribution off(S) will be from orbital products on the carbon atom, 
and comparison of the two scattering factors should be a good test of the present 
method. 

As may be seen in Table IV, the factors agree to the six digits specified by the 
convergence criterion. The single exception is Jmf(S) at c = 3, at which point 
the imaginary component of the molecular scattering factor lies close to a node. 
Since the individual orbital product scattering factors do not, in general, have 
their own nodes here, accuracy is lost in summing over the orbitals in the basis 
function (this loss will occur regardless of the method employed to calculate the 
orbital product scattering factors). 

Finally, Table V gives the coherent x-ray scattering intensity for the hydrogen 
molecule. This has been calculated using Davidson and Jones’ [22] natural spin- 
orbital expansion of the essentially exact ground state wavefunction of Kolos 
and Roothaan [23]. 
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TABLE V 

Coherent Intensity for Hydrogen Molecule 

0 0.0000 3.99985 
0.1 0.0215 3.93080 
0.2 0.0429 3.73360 
0.3 0.0644 3.43069 
0.4 0.0859 3.05464 
0.5 0.1073 2.64117 
0.6 0.1288 2.22314 
0.7 0.1503 1.82656 
0.8 0.1718 1.46890 

0.9 0.1932 1.15934 
1.0 0.2147 0.90036 
1.2 0.2576 0.52227 
1.4 0.3006 0.29169 
1.6 0.3435 0.15919 
1.8 0.3864 0.08607 
2.0 0.4294 0.04672 
3.0 0.6441 0.00360 
4.0 0.8588 0.00064 
5.0 1.0735 0.00011 
7.5 1.6102 0.00001 

10.0 2.1469 0.00000 

Intensities can be calculated by means of the formula [2] 

Lmllerent(~>/~c1 = J-1 I f@>l” 4’ 40 . (23) 

As in Eq. (22), the integration over 7’ in (23) is performed using the orthogonality 
of SM,n(~, 7’) (8). 1,r is the classical expression for the total intensity of radiation 
scattered by a free electron [24]. One can check the results of (23) by means of the 
sum-rule procedure [25, 261 

,J(O) = (2~r-~ j.f(S) dS. (24) 

p(O) is the electron density at the midpoint of the bond. Application of (24) to 
the molecular scattering factor of H, yielded p(O) = 0.13608 electrons per cubic 
bohr. Direct calculation using Davidson and Jones’ wavefunction [4] gave 
p(O) = 0.13614 electrons per cubic bohr. The integration over S was performed 
using Simpson’s rule with an upper limit of S,,, = 28.55 bohr-l rather than 

581/x I/I-IO 
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infinity. This corresponds to a c of 20 and is near the limit of reliability for 
scattering factors, as discussed above. Truncation at c = 20 allows us to account 
for 99.96 % of the electron density at the bond center. 

We are presently engaged in further studies utilizing this method, such as the 
projection of accurate diatomic wavefunctions into approximate scattering models. 
Some preliminary results have been reported [27]. In addition, our algorithm 
can be applied to the study of molecular scattering of electrons (see, e.g., Ref. [28]). 

In conclusion, we would like to point out that all of the basic functions and 
integrals used in our program are produced with an accuracy limited by the size 
of the computer word; the loss of accuracy involved in assembling them into 
a scattering factor is due to computational differencing and not to any instability 
in the recursion relations. Therefore, greater accuracy can be achieved at any time 
by imposing a more stringent convergence criterion and increasing the size of the 
computer word, for instance, by converting the program from single to double 
precision (36 and 72 bits, respectively, on the UNIVAC 1108). On this basis, we 
claim that the method presented here is capable of arbitrary accuracy. 

APPENDIX 1: EVALUATION OF THE INTEGRAL 

1 y (4” - 1)” pvq,+,(cf) d( 

Let I&(c, a) = j: (5” - 1)” [“e-*tjR(c[) df, where OL > 0, K = k - M, 
R = r + M. The integers k, M, and r are all nonnegative. From the following 
two recursion relations for spherical Bessel functions, 

L(x) + .i,+dx) = G9 + 1) j&9/x, (AlI 
?LW/~x = L(x) - (r + 1) jr(x>/x, 642) 

a useful recursion for Ig,can be derived. Let z = oi/c, AR = (R - K + 1)/(2R + l), 
BR = z, and C, = -(R + K)/(2R + 1). Then, 

ARztih K + BR1: K + cR%, K = @W&J+, + ~,,eCj,(cN/c, (A3) 

where 6,, is the Kronecker delta. (A3) is an inhomogeneous finite difference 
equation. At large R, (A3) has a homogeneous solution of the type 

P R.K = PRY (A4) 

where /3 has the two roots 

(6, = -z f (1 + zZ)l/Z. 644’) 
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For 0 < z < cc, (A4’) has the ranges, 0 < p+ < 1 and -1 > p- > - 00, so that 
for forward recursion on R, /% introduces a homogeneous solution to I& and 
for backward recursion on R, 8, introduces a similar error. Thus (A3) is unstable 
for recursion on R in either direction. 

For the case, R = -K, we note that CPK = 0, so that (A3) is a two term finite 
difference equation. Let yR be the inhomogeneous term 

Then by Gaussian elimination, starting at R = M, i.e., k = 0 so that zeros are 
avoided in the generation of coefficients, (A3) becomes a useful two-term recursion 
relation 

where 

A,$!,,,-, + &&_M = Yg > w-9 

and 

BR = B, - CRAR--l/&--l, b, = B,, , W’) 

At large R, 

YR = YR - CRJR-lI~R-1~ YM = YM . 

BR --z [z rrt (1 + z2)1/2]/2 = y, (A71 

and we take the positive root of BR which is always true for K = -hf. A homo- 
geneous solution for (A6) is pR, where 

p = -2y. WI 

For 0 < z < cc, the range for (A8) is -1 < /I < co. A downward recursion 
in R for (A6) is therefore stable. By starting (A6) at large R, an error introduced 
into If++l,K will decrease exponentially. The task, then, is to evaluate I& at large R. 

The function Z&(M = 0) may be represented by the power series, 

For large R the product e-a CiLF”” d/p! approaches unity. One then has the 
power series representation of the integral from zero to infinity so that 
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The absolute value of the ratio of (A9) to (AIO) will be less than aRi l/(R + I)!. 
For example at 01 = 2 and R = 30 the relative error in (AlO) is at most 1.9 x 10~~~. 
At a: = 25 and R = 100, the corresponding error is less than 1.7 x 10~‘~. 

The integral (AIO) may be represented by a hypergeometric function [29]: 

z; K m v'%cRr(R + K+ 1) 
i 
R+K+1 R-+K+2 

2R+lmR+K+lr(R + 3/2) 2F1 - 2 ’ 2 ; R --i- 3/2; --(~/a)$ 

(Al 1) 

The circle of convergence for (Al 1) only holds for c < 01, and, moreover, the 
series is divergent for K > 0 and only conditionally convergent for K = 0. By 
analytic continuation we can get (Al 1) into a unit circle for all c. Since the difference 
of the numerator terms in eFl of (All) is l/2, we may use one of Kummer’s 
quadratic transformations. From the relation [30] 

(1 + x)~~ 2F,(2a, 2a + 1 - c; c; x) = 2Fl(a,a + l/2; c; 4x(1 + x)-~), 

(Al 1) becomes 

z; K m &cRr(R+ K+ 1)2K 
/3R+K+1r(R f 312) ,F,(R + K + 1, K + l/2; R + 3/2; -Cc@>“>, 

6412) 

where p = N + 401~ + c2. The circle of convergence for (A12) holds for all c, 
but zFl is divergent for K > 0. Again, by analytic continuation we transform (A12) 
by the linear transformation [30] 

,F,(a,b; c; x) = (1 - x)-" eF,(b, c - a; c; x(x - I)-') 

to the computationally useful relation 

z; K % dacRr(R+ K+ 1) 
flR+1/2yK+1/2r(R + 312) ,F,(K + l/2, -K + l/2; R + 312; c”/(2/3y)), 

W3) 

where /3 is defined in (A12) and y = 1/a2 + c2. 
The argument in 2Fl of (A13) is between 0 and l/2 for 0 d c 6 co. The series 

is now absolutely convergent for all K 3 0. Recall that (All)-(A13) are approxi- 
mations to ZisK at large R. In practice we choose R such that the relative error is 
at least less than 1 x lo-lo. Typically five to seven terms in zFl of (A13) are needed 
for convergence to ten place accuracy. For M # 0 and R large, the binomial 
expansion, 

‘EK = 2 (-‘)’ ($) z:,K+2Wf-P, 
P=O 

(A14) 
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may be used for constructing a border array in K at constant M and R, where 
(A13) is used to evaluate Zj,K+B(M-PJ . Roundoff in (A14) is not severe provided M 
is not too large. In practice, M is less than 10. Once a border array in K at large R 
has been constructed by (A13) or (Al4), then (A6) and (A6’) give a second border 
in R at K = --M. The rest of the table is filled in for constant M by 

ZM R-l,K = (4~) Z& f (R - K + 1) ZgKel/c - yR (Al5) 
and 

ZM R,K = (~c)-‘(.Y~ - $!+,,J + CR f KVf&/~. (‘416) 

y, is defined in (A5) above. (A15) applies when al/c < 1 and (A16) is stable for 
al/c > 1, whereby a downward recursion on R, with K stepped up one each time, 
is executed. A suitable table of L(~ entries is retrieved from a previous calculation 
of IMP1 except at M = 0, where a vector of elements e-“j,(c)/c is first computed. 
Thut’tne must start the table of integrals at M = 0 and work up to the desired 
value of M. For the two-center Fourier transforms of interest M varies least, 
so that one loses very little time with this procedure. 

Tables of Z~JOI, c) have been computed for 2 < a: < 25, 0 < c < 25, 
0 < k < 14, 0 < r < 100, and 0 < M < 10 by means of (A13), (A14), (A15) 
and (A16). The entries were spot-checked by both three-term recursion relations 
(A3) and 

ZM R-1.K t If+,,, = W7 + 1) I;,-, 9 CA171 

where (A17) follows from (Al). Agreement was always within two integers in 
the least significant decimal place of the machine word (about 8 decimal places 
for the Univac 1108). A third relation 

I& + z&J = I&!+, (A18) 

was used to check the entries among the A4 levels. The agreement in this case 
was comparable to the other checks. Also, certain elementary integrals, such as 
Z$(CY, c), were explicitly evaluated and found to agree with the tables to within 
the accuracy of the machine word. 

APPENDIX II: ESTIMATE OF TERMS FOR CONVERGENCE OF C;z=,,, ayen 

We desire a value of p such that I a,_,+,/a,-,,, j < 10-g. The ratio an-m+Dlan-m 
may be expanded 

an-n+e an-m+9 . an-m+p-2 an-m+2 -= . . . ~ = Yn-wl+zJ eyn-VltP-4 ... Yn-m . 
an-m an-mn+p-2 an--nlfP-4 an- 
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The asymptotic behavior of yT is given by [20] 

If we apply this relationship to the nonasymptotic region around r = n - m, 
we get 

an-m+plan-m m (c/2)P [(n - m + p - 2)2 (n - m + p - 4)2 ... (n - m)“]-‘. 

We may approximate the term in square brackets by (n - m + p/2)” and write 

(c/(2n - 2m + p))” - 1O-q, 

the logarithm of which is Eq. (16) of the text. It is noted that this expression is 
more useful for determining computer program storage requirements and reason- 
able input parameters than for actual computation. Because of the application 
of the asymptotic relationship to the nonasymptotic region, p < rt - (n - M). 
The inequality seldom amounts to more than 10, that is, 5 additional terms in the 
summation. 
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